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Summary. Within the impulsive framework, the energy transfer processes in colli- 
sions of atoms with diatomic molecules are considered. In the case of noncollinear 
collisions involving multiple impacts between the particles, analytic expressions for 
the amount of the collision energy transferred to the internal degrees of freedom of 
the molecule have been derived. The limiting cases of these expressions are the 
well-known Mahan (a single impact) and Mahan-Shin (collinear collisions) for- 
mulas. The efficiency of energy transfer in collisions of cesium halide molecules 
with xenon atoms has been computed as an example; the results obtained agree 
well with the data of accurate trajectory calculations. 
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I Introduction 

Conversion of the translational energy of atomic and molecular collisions into the 
internal energy of the partners plays a major role in the reagent activation 
mechanisms in bimolecular processes [1]. The T-V, R exchange is of great 
importance also in relaxation phenomena. The role of energy transfer has been 
thoroughly described for collision-induced dissociation of molecules into atoms 
and ions I-2-5]. As has been shown by several authors [3-9], the efficiency of 
fragmentation of alkali halide molecules via collisions with chemically inert par- 
ticles strongly depends upon the collision partner orientation, the masses of atoms 
involved, and the attack location, which is due to the fact that the process 
endothermicity to be compensated requires a high degree of conversion of the 
collision energy into the internal energy of the molecule. 

By now, side by side with the experimental technique 1,10-14], diverse theoret- 
ical methods 1-15-20] have been developed which allow one to calculate, more or 
less accurately, the vibrational and rotational excitation of a diatomic molecule 
colliding with an atom for various collision configurations and energies, or to 
determine the effect of the excitation of a given degree of freedom of the molecule 
on the reaction cross section (an ample bibliography on the T-V, R, E exchange is 
compiled in Ref. [1]). Nevertheless, a rigorous quantum mechanical solution of the 
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problem is still almost inaccessible. Quasiclassical trajectory simulation requires 
a detailed information on the potential energy surface and is also not always 
applicable. A description of energy transfer processes which qualitatively (and 
sometimes even quantitatively) agrees with the experimental data can often be 
presented by the impulsive model [5, 21-24] that treats particles as hard balls 
exchanging energies and momenta according to the elastic impact laws. The 
impulsive approximation is especially useful if one studies reactions involving 
atoms heavy enough to neglect a lot of quantal effects. 

Within the impulsive approximation framework, the amount of energy trans- 
ferred to the internal degrees of freedom of a diatomic molecule in its collision with 
an atom can be sometimes computed analytically. By now, in the case where the 
initial internal energy of the molecule is zero, two expressions for the amount of 
energy transfer have been known, namely, the Mahan formula [25, 26] and the 
Mahan-Shin formula [27, 28]. 

Let an atom A collide with the atom (or ion) B of a diatomic molecule BC which 
was at rest (i.e., with zero internal energy) before the encounter. We shall treat the 
particles A, B, C as elastic bails. At the moment of impact, the ball B is tangent to 
the balls A and C (Fig. la). Denote by • the angle between the AB and BC axes and 
by ~ the angle between the AB axis and the incident direction of A in the BC 
center-of-mass frame (Fig. la). The hypothesis that at the moment of impact the 
balls B and C touch is inessential for the collinear motion (4 = ~k = 0) but is rather 
restrictive in analyzing noncollinear collisions. Also let ml, m2, and m3 be the 
masses of the particles A, B, and C respectively, E¢ol the collision energy and EBc the 
final relative kinetic energy of the balls B and C. If the second A-B strike does not 
occur (i.e., the collision consists of a single hit A-B or two sequential hits A-B and 
B-C only), simple calculations based on mechanics of encounters of elastic balls 
give the Mahan formula [3, 4, 23, 25, 26]: 

6 = --EBc = KcosZ~ ' K = 4mlm2m3(ml + m2 + ma) = sin2(2fl), (1) 
Eeol (ml ÷ m2) 2 (m2 + m3) 2 

where fl is the Eyring-Polanyi skewing angle [29] which characterizes the strength 
of coupling between translational and vibrational motions: 

0 < fl < It/2, cos2 fl = mlm3 
(ml + m2)(m2 + m3)" (2) 

The smaller is m2 compared with ml and m3, the smaller is the angle ft. Equation (1) 
implies that in the absence of the second A-B strike the quantity EBc is independent 
of the angle 4, i.e., of the orientation of the molecule BC at the instant of impact. 

The Mahan formula (1) is widely exploited in investigations of dynamics of 
inelastic scattering as well as chemical reactions [3, 4, 20, 22, 23, 30]. However, 
when m 2 is smaller than ml and m 3 (to be more precise, when m2(ml + m2 + 
m3) < 3mlma, i.e., fl < re/3 [31, 32]), multiple (or repeated) encounters in the 
A + BC system become possible in which A strikes B, then B strikes C, then 
B strikes A again, and so on. For small m2, such multiple impacts considerably 
change the process dynamics [28, 31]. On the other hand, the inequality 
fl < re/3 = 1.047 ensuring the possibility of repeated encounters holds for many 
systems A + BC; e.g., in the case of cesium salt dissociation, for the collisions of the 
Xe atom with the halogen ion X -  of the salt molecule CsX, the angle fl is 0.5069, 
0.6626, 0.8981, 1.036 for X = F, C1, Br, I respectively. In the presence of multiple 
impacts, Eq. (1) is not valid. 
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Fig. 1. (a) Particles at the moment of impact. (b) The 
collision kinematics in terms of the natural 
coordinates (x, y). The dashed and dashed-dotted 
hemicircles mark the halfplanes (10) and (11), 
respectively. (e) The initial conditions for the 
trajectory calculations. The center-of-mass of the salt 
molecule is marked as O 

Via the so-called method of images introduced by Jepsen and Hirschfelder in 
Ref. [33], or the kaleidoscope method, Shin [28] derived an expression for the 
amount  of energy transfer for any number of A-B impacts in collinear collisions 
A + BC (~ = ~ = 0): 

6 - EBC _ sin2(2nfl). (3) 
Ecol 

Here n is the number of A-B encounters which is equal to 

(see Ref. [28]), where ~(t) denotes the smallest integer subject to the inequality 
~( t ) />  t (e.g., ~(4.2) = ~(4.7) = S(5) = 5). Equation (3) was first pointed out by 
Mahan [27], however, Ref. [27] contained neither proof nor indication what the 
number n is equal to. As in the Mahan formula (1), one assumes in the Mahan-Shin 
formula (3) that the BC molecule had zero internal energy before the collision. 
Analytic expressions for the amount  of energy transfer in the case of nonzero initial 
vibrational excitation of the molecule BC are also obtained in Ref. [28]. Of 
other papers containing formulas for the amount  of energy transfer in impulsive 
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collisions of an atom A with an excited molecule BC, we mention here Refs. [5, 23, 
31, 32, 34]. In papers [25, 35], impulsive energy exchange is specifically treated as 
the limitin9 case of energy transfer processes when the collision duration becomes 
negligible compared with the vibrational period of the diatomic molecule. 

Equation (3) confirms the well known thesis that the dynamics of collinear 
collisions is controlled to a great extent by the Eyring-Polanyi angle (2) [36, 37]. As 
we will see in the sequel, for noncollinear collisions (in the configuration shown in 
Fig. la) the role of the angle fl is played by the angle e defined as: 

f l~<e~<rc - f l ,  c o s e = c o s f l c o s #  (4) 

(e = fl for # = 0 and c~ = g/2 for q~ = re/2). 
Equations (1) and (3) refer to two diametrically opposite extreme situations: 

A + BC collisions with an arbitrary configuration which involve a single encounter 
A-B, and eollinear collisions A + BC with an arbitrary number of A-B hits. On the 
other hand, it is in the case of multiple impacts where it is of great importance to 
take into account the whole variety of collision configurations, not only collinear 
collisions, since for repeated impacts the energy EBc exhibits a strong dependence 
on the angle ~. Besides, for many processes (in particular, for collision-induced 
dissociation A + MX --* A + M + + X-  where A, M, and X denote a rare gas or 
mercury atom, an alkali metal atom, and a halogen atom respectively) the sideways 
collisions turn out to be the most effective [4-9]. 

In the present paper, we obtain an analytic expression for the amount of energy 
transfer in the impulsive limit for arbitrary masses ml, m2, m3 (and, hence, for an 
arbitrary number of impacts during a single collision) and an arbitrary value of the 
angle • (i.e., an arbitrary collision configuration). The derivation of this expression 
is briefly presented in Sect. 2, while some calculation details are given in Appendix 
A. Our expression should be considered as a generalization of the Mahan formula 
(1) to the case of multiple encounters and at the same time as a generalization of the 
Mahan-Shin formula (3) to the case of noncollinear collisions. In Sect. 3, we 
compare, for various angles ~, the efficiency of translational-internal energy 
exchange predicted by the impulsive model with the results of accurate trajectory 
calculations for four systems Xe + XCs with X = F, C1, Br, I. 

These systems were chosen for comparison of impulsive and trajectory results 
due to the following reasons. Firstly, the impulsive approximation predicts the 
values of the differential and total cross sections for dissociation and molecular-ion 
formation in Xe + XCs collisions which are in a qualitative agreement with the 
experimental data [5, 21-23]. Secondly, there is a direct evidence for the impulsive 
nature of the Xe + XCs interactions. Namely, the duration of the Xe + BrCs 
collision calculated in Ref. [38] turned out to be much shorter than the character- 
istic rotation periods of CsBr. Thirdly, the Xe + BrCs collision configuration most 
favourable for dissociation is a hit of the xenon atom on the bromine anion with 
the incident Xe velocity orthogonal to the salt molecule axis [4-7, 9] which 
indicates importance of the orientation effects in the systems under consideration. 

Finally, in Appendix B we present a formula for the scattering angle of the 
projectile A within the impulsive framework. 

2 Energy transfer in the impulsive approximation 

In this section, we obtain a general formula for the amount of energy transfer in the 
impulsive limit (some technical details are presented in Appendix A). Since the 
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kaleidoscope method exploited in Refs. [28, 31] to analyze multiple impacts in 
a collinear system of three elastic balls with a piecewise constant interaction 
potential seems to be of low efficiency when applied to noncollinear configurations, 
we propose another construction where to each encounter, there will correspond 
the reflection with respect to a certain straight line in a special coordinate frame on 
the plane. 

Consider a system of three perfectly elastic bails A, B, C with masses m~, m2, m3 
in which the ball B is tangent to the balls A and C, the angle between the AB 
and BC axes being • (Fig. la). In such a system, a sequence of impacts A-B, B-C, 
A - B , . . .  taking an infinitesimal time interval can occur (one may imagine a system 
of three balls A, B, C where the distance between A and B and that between B and 
C are very small and equal to e, and then examine the limiting behaviour of this 
system as e ~ 0). The angle • is left fixed during the whole series of encounters 
whereas the velocities V1, V2, V3 of the balls vary. We shall study the general case 
where V~, V2, and ¥3 are arbitrary before the collision (and not necessarily ¥2 = 
V3 = 0). 

Denote by k and s the unit vectors along the axes AB and BC respectively 
directed at B (see Fig. la) and set: 

W = ml(Vl,k)k + m 2 V  2 + m3(V3,s)s 

where ( , )  is the standard inner product. It is not hard to verify that each impact 
leaves the vector W invariant and that the equation: 

ml(a, k)k + mEa + m3(a,s)s = W 

with respect to a has a unique solution: 

1 ( m ~ k + m 3 r l s  ) 
a = - -  W - -  

m2 (rnl + mz)(m2 + m3)sin2a ' 

where 

= (m 2 q- ma)(W,k) + m 3 ( W , s ) C O S  4 ,  

11 = (m 1 q- m 2 ) ( W , s  ) + ml(W,k)cos 4 ,  

and ~ is defined by Eq. (4). In the new coordinate frame moving with the velocity 
a with respect to the initial frame, the velocities V~ - a, V2 - a, V3 - a of the balls 
A, B, C become: 

uk + ul, - (mluk + m3vs)/m2, /)s --J- Vl (5) 

respectively, with ul orthogonal to the AB axis and vl orthogonal to the BC axis. 
The vectors ul and vl are left fixed during the collision. The kinematic relations for 
encounters of elastic balls [5, 23] imply that the impacts A-B and B-C act on the 
(u, v)-plane as linear operators: 

2m3v 
U' = - -  U + - - C O S 4 ,  V' = /) 

ml + m2 

and 

2rn l u 
U' ~ U, V' ~ - -  V -'b - - C O S t ~  

m2 + m3 
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respectively (u, v being the values of the coordinates  defined by Eq. (5) before an 
encounter  and u', v', after the encounter).  In t roduce new coordinates:  

x - mTT~],_ [u(mi(mi + m2)) i/2 + v(m3(m2 + m3)) 1/2] sin 5' 

y = rn~/2 [u(ml(mi + m2)) 1/2 -- v(m3(m2 -b m3)) 1/2] cos 2" (6) 

The inverse t ransformat ion is: 

( u =  - m l ( m ~ + m 2 ) /  ~ c o s ~ + y s i n ~  , 

( v = -  m3(n~-+m3)J sin---~ x c o s ~ - y s i n  . (7) 

In terms of the coordinates (x, y) the operators  of impacts A-B and B-C  take the 
form: 

and 

x '  = x c o s a -  ys ina ,  y'  = - x s i n c ~ -  ycosc~ 

x '  = x cos ~ + y sin ~, y'  = x sin ~ - y cos a 

respectively, i.e., they become reflections with respect to the straight lines: 

y = - x tan ~ (8) 

and 

y = x tan ~ (9) 

respectively (Fig. lb). The angle between these straight lines is equal to cc An A-B 
encounter  is possible only if(V1 - V2, k) > 0jus t  before it, which,  as one can verify, 
is equivalent to: 

y < - x t a n ~ ,  (10) 

while a B-C  encounter  is possible only if (V3 - V2, s) > 0 just before it, which is 
equivalent to: 

~t 
y > x t a n ~ .  (11) 

The collision kinematics on the (x,y)-plane looks as follows. The point  
To(xo, Yo) corresponding to the initial state of the system (before the first impact 
A-B) lies in the halfplane (10). The initial values Xo and Yo of the coordinates x and 
y can be easily computed  by the initial values of V1, V2, Va. In the most  impor tan t  
part icular  case where an a tom A collides with a "cold" molecule BC (i.e., initially 
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¥2 = V3 = 0) and the angle between the incident vector V~ = V and the axis AB is 
~, (Fig. la): 

, m l m 2  ~ 1 / 2  V c o s ~ /  (z 
x 0 = _ \ m l  + m 2 /  s~-nn~- cos~, 

 l' Vcos , 
Yo = kin1 --}- mz / sin~- sln~ 

(note that in this case To lies on the straight line (9)). The subsequent states of the 
ball system (after the A-B encounter, the B-C encounter, the second A-B encoun- 
ter . . . .  ) are described by points T1, T2, T3 . . . .  where each T~ (i/> 1) is the image 
of T~_ 1 under the reflection with respect to the straight line (8) for i odd or line (9) 
for i even (Fig. lb). All the points T~ are at the same distance R from the origin 0. If 
the initial point To has the coordinates: 

To = (R cos ~0, - R sin q~) 

with ~/2 < ~0 < re + ~/2 then the coordinates of the point T~ (i >1 0) are: 

T~ = (R cos (q~ - i~), ( - 1) ~+ 1R sin (q~ - i~)). 

The impacts halt (i.e., the balls start flying apart) as soon as a point T~ = TM. 
finds itself outside the halfplane (10) for i even or outside the halfplane (11)for i odd 
(see Fig. lb), whence it is not hard to obtain that the total number M.  of encounters 
is: 

=(2q0 - ct), 
M , = M , ( q ~ ) = - \  2ct ] (12) 

where N(t) denotes the smallest integer subject to the inequality ~(t)/> t. The 
number of A-B encounters is therefore: 

M = M ( ~ o ) = ~  ~ \  4~ ]" (13) 

For  the collision of an atom A with a "cold" molecule BC one has ~0 = re - ~/2 
whence in this case the total number of impacts is: 

(14) 

and the number of A-B impacts is: 

/,/ ~ r e - - ~  

The maximum total number of impacts which can occur in our system (for 
arbitrary initial velocities Vl, ¥2, V3) is: 
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and the maximum number of A-B impacts is: 

N = M  l r+  = _  . (17) 

For 4 = 0 Eq. (16) (with e replaced by/3) was obtained in Refs. [39-41] (see also 
Refs. [42, 43]) and Eq. (17) in Ref. [28] (see also Ref. [32]) via the kaleidoscope 
method. 

One can compute the final values of the coordinates (u,v) (after the last 
encounter) from the final values of the coordinates (x, y) by Eq. (7). Having found 
the vectors ul, vl (5) and the final values of the coordinates (u, v), one then easily 
obtains the final relative kinetic energy Eac of the balls B and C. Postponing 
the calculation details to Appendix A, we shall give the result for the collision of 
an atom A with a "cold" molecule BC. In this case the ratio of the energy 
EBc transferred to the molecule BC to the collision energy Ecol is: 

_ EBc 

Eeoi 
sin2(noO { 1 sin [(n + 1)ct] sin [(n _ 1)~] } cos2 ~ - K ~ n i ~  sin2(ne) -- cos2----- ~ 

sin2 fl [- • 2-~ " 4 sin4(ne) . ] 
- ~ L s l n  tzne) + ~ sm(e  + f l ) s in (e -  fl) cos2O. (18) 

Having in view various possible applications, we have presented two equivalent 
expressions for 6. Equation (18) was first derived in preprint [44] and announced in 
Ref. [45]. Recall that fl is defined by Eq. (2), K by (1), e by (4) and n by Eq. (15). For 
4 = 0 (a collinear configuration) we obtain the Mahan-Shin formula with addi- 
tional factor cos2 ~: 

_ EBc _ sin2(2nfl)cos z 
gcol 

(cf. Eq. (3)). For n = 1, Eq. (18) reduces to 6 = Kcos21p (the Mahan formula (1)), 
and for n -- 2, it takes the form: 

6 = 4Kcos 2 4(1 -- Kcos 2 4)cos 2 0. (19) 

Note that ~ is independent of EeoI. 
If, for instance, r~/3 ~ fl < re/2 then n = 1 for all 4 [31, 32], and 6 = Kcos 2 0. In 

other words, for fl ~> ~/3 more than a single A-B impact cannot occur for any 
collision configuration, and the Mahan formula (1) always holds. If n/5 ~< fl < r~/3 
then n = 1 (a single A-B hit) for 4 t> 4o (and then 6 = K cos z ~k) and n = 2 (two 
A-B hits) for 4 < 40 (and then 6 is to be calculated by the formula (19)). Here 4o is 
determined by the condition c~ = ~/3, i.e., cos 4o = (2 cos fl)- 1. If fl < re/5 then 
n ~> 3 for small 4 (to be more precise, for cos 4 > cos(rc/5)/cos fl). 

For the collision of an atom A with a "cold" molecule BC, it is also possible to 
calculate how the energy EBc transferred to the molecule is distributed among 
vibrational and rotational degrees of freedom. To be more precise, set: 

m 2 m 3  
L'Bcg?vib -- 2(m2m2mm3)(V2f-~- - -  V3f's)2' E[3°c - 2(m2 + m3) [ v z f  - -  V3f 's]2 '  

where [ ,  ] is the standard vector product while V2f and V3f are the final velocities 
of the balls B and C. The quantities "~nCWVib and E ~  model the amount of energy 
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transferred to vibrations and rotations respectively of the molecule BC, and we 
show in Appendix A that: 

wvib . 2~sin2(2nct) os 2 ~vib = X'~BC 
Ecol = s i n  p ~ c ~b, 

rot sin*(n~) 
3rot _ EBc 4 s i n 2 f l - - s i n ( c ~  + fl)sin(c~ -- fl)cos2$. (20) 

- -  Eeo-" ~ = sin 4 ct 

These formulas were announced in Ref. [46]. Of course, 6 vib + 3 r°t = C5. For  # = 0 
(a collinear configuration) one has firot = 0, whereas for tp = ~z/2 (an orthogonal 
configuration) ~vib = 0. 

We conclude this section with the following remarks. It is well known that when 
the number of impacts is very large (or, in the case of motions in a realistic 
potential, when the collision duration greatly exceeds the characteristic vibrational 
period), translational-internal energy exchange is, as a rule, inefficient [28, 31, 32, 
34, 47, 48]. Equation (20) for the amount 3 vib of energy transfer to the vibrational 
degree of freedom confirms this thesis. Indeed, one obtains from Eq. (15) that: 

~ 7Z 
2 n + ~  < ~ c t < 2 n - 1  and 12mr n l ~ e < 2 n _ l ,  

n being the number of A-B encounters. Consequently, for n >~ 2: 

(~vib " 2 sin2(2he) ( 2 - - ~ - 1 )  ----- sin fl ~ COS2~] ~ sin2(2mQcos2~b < sin 2 __ COS2~ ¢ 

(we have used the fact that fl ~< ~ ~ rc - fl and therefore sin c~ >t sin fl). Thus, as 
n ~ ~ ,  the quantity 6vib decreases with asymptotics n -2 .  

In collinear collisions 6 = (~vib and 6 approaches zero with asymptotics n-2as 
n ~ oo. On the other hand, in noncollinear collisions the amount 6 of energy 
transfer can be considerable (and, moreover, arbitrarily close to 1) for an arbitrarily 
large number of impacts, due to a special choice of fl and ~! For  instance, let fl 
be sufficiently small and ~ = ~v/-cfl with c being an arbitrary constant greater 
than 1, i.e.: 

cos ~ = cos ~oc = c°s(x//-cfl) (21) 
COS fl 

(as we will see in the sequel, it is indeed more convenient to write c~ = V/c fl instead 
of~ = cfl). Then as fl ~ 0, the number n of A-B encounters tends to infinity, but, as 
is not hard to see from Eq. (18): 

4 ( c - -1 )  1 +  + y2 cos2O+O(f l4)  
3 =  C 2 T c 1 

where 7 = (re/2) - n~ (note that lYl ~< ~/2 = x/~fl/2 according to Eq. (15)). Thus, in 
this case 6 is bounded from below by a positive constant (provided that ~ is fixed). 

One should emphasize that this effect is entirely due to the energy transfer to 
rotations, since 3 vib in our example tends to zero as fl ~ 0: 

t~vib 4~ 2 2 
= - - c o s  0 + o(#*) 

C 

according to Eq. (20). 
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Table 1. The amount 6 of energy transfer for ml = mxe, m3 = mcs and various m2. The angle q~2 is 
defined by Eq. (21) 

m 2 fl in rad n for • = 0 6 for • = 0 t~ 2 in deg n for • = ~2 1 - 6 for • = ~2 

mv 0.50690 3 1.00 X 10 -2 30.424 2 5.12 x 10 -3 
mn 0.12314 13 3.59 x 10 -3 7.0732 9 2.56 X 10 -s 
mMu 0.041527 38 2.09 X 10 - 4  2.3800 27 1.25 x 10 -v 
mps 0.0040757 385 1.08 x 10 -5 0.23323 273 4.39 x 10 -12 

The max imum of the function 4(c - 1 ) c  - 2  is at tained at c = 2 and is equal to 1. 
If  c = 2 then Eq. (18) implies that: 

6 = 1 - _ ~2 c o s 2 ~  + O(/~6).  

We can conclude the following. Let the Eyr ing-Polany i  skewing a n g l e / / a n d  
the angle # determining the collision geometry vary in such a manner  that  Eq. (21) 
with c = 2 remains valid. Suppose that  the collision is head-on (¢ = 0). Then as 
/~ ~ 0, the number  of  A -B  impacts during a single collision tends to infinity 
whereas the amoun t  of energy transfer to rotat ions tends to unity. 

This conclusion is illustrated by Table 1 which presents some features of  
head-on collisions A + BC for fixed masses ml = mxe, m3 = mcs and a varying 
mass m2 of the "middle" particle B. The computa t ions  have been performed for four 
m2 values equal to mF, mn, mMu and mps (Mu = ~ + e -  being muon ium and 
Ps = e+e - ,  positronium). Of  course, one should not  expect that  the impulsive 
model  can describe adequately the behaviour  of real systems involving muon ium 
or positronium, but we are interested here in a theoretical possibility of  impulsive 
interactions with a large number  of impacts and the amoun t  of energy transfer 
close to 1. For  each of four masses m2, the value o f / / a s  well as the number  n of  A-B  
encounters  and the amoun t  3 of  energy transfer are pointed out for two angles 4,, 
namely, angle # = 0 and angle 4~2 = q~2(/~) defined by Eq. (21) in which the value of 
c is set to be 2. One sees in Table 1 that  n increases as /~ ~ 0 for both  angles. 
Nevertheless, for q~ = 0 the efficiency of energy transfer decreases rapidly, whereas 
for # = ~2 the amoun t  of energy transfer tends to unity even more rapidly 
(al though the angle ~2(//) itself vanishes as/~ -~ 0). 

Note  finally that  f rom the viewpoint of  the general theory of  collisions of 
elastic balls moving in space [40-42,  49], our  model  describes a degenerate 
situation where at some momen t  one of the balls is tangent to two other  
balls simultaneously. In generic systems of balls, there occur only double 
collisions. 

3 Comparison with quasiclassical trajectory model 

It  is useful to compare  the efficiency of energy transfer predicted by the impulsive 
model  with the results of accurate trajectory calculations. We have fulfilled in-plane 
trajectory simulation of  inelastic scattering: 

Xe + XCs ~ Xe + XCs* 
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of Xe atoms by CsX molecules, where X = F, C1, Br, I. Since our purpose is to 
determine the amount  of energy transfer as a function of the angle # between the 
AB and BC axes (A = Xe, B = X- ,  C = Cs ÷, see Figs. la, c) in head-on collisions 
with the fixed collision energy, two-dimensional calculations are sufficient. 

For  the systems Xe + CsX, we used the potential energy surface of the following 
form (similar to that exploited in Refs. [3-9, 21, 38, 44, 50, 51]): 

U(R1,R2,Ra) = A2 exp( - R2/P2) 
1 cz+ ÷ ~ _  C 2 

RE 2R2 4 R2 6 

C1 C3 
+ A1 exp( -- R1/pl) + A3 exp( - R3/pa) R6 R6 

so 1 1 1 

2 -  R1R3 J 

(we have presented the formula for U in atomic units). Here R1, Rz, R3 a re  the 
internuclear distances Xe-Cs ÷, Cs+-X -, Xe-X-  respectively while So, c~+, e_ 
denote the polarizabilities of a xenon atom, cesium cation and halogen anion 
respectively. This surface includes a T-Rittner potential for the salt molecule [52] 
plus similar potentials, but without the Coulomb term - I/R, for interactions 
Xe-Cs ÷ and Xe-X-  plus a summand responsible for the polarization interaction of 
the Xe atom in the presence of the Cs ÷ -X-  dipolar field. The parameters Aj and pj 
of the Born-Mayer  walls Ajexp( - Ri/pj ) and the dispersion constants Cj in the 
pair potentials were determined via fitting the corresponding analytic curves to the 
interaction potentials extracted from the experimental data. The details of the calcu- 
lation are to be found in Ref. [50] (see also Ref. [21]), while the resulting values of 
the parameters are presented in Ref. [44]. 

In our studies, both ions of the salt molecule CsX were assumed to be at rest 
and at the equilibrium distance before the collision, whereas the initial position and 
velocity of the projectile atom Xe were chosen as shown in Fig. lc. The calculations 
were performed for 0 ~< • ~< 90 ° and 1 eV ~< Ecol ~< Emax where Eeo 1 denotes the 
collision energy and Ema x w as  equal to 5 eV for X = F and 4 eV for X = C1, Br, I. 
For  collision energies E¢o~ -- Emax + 1 eV, we observed dissociation of the salt 
molecule and formation of complexes XeCs ÷ for some values of the angle • (for the 
Xe + ICs system, dissociation without complex formation only). 

The results obtained are shown in Figs. 2-5. The plots of ~ as a function of the 
angle • with the collision energy E~o~ fixed are presented in Figs. 2a-5a, 6 being the 
ratio of the energy transferred to the salt molecule in the collision to the collision 
energy. In Figs. 2b-5b, ~ is  plotted vs the collision energy E¢o~ with the angle 

fixed. The values of Eco 1 (in eV) in Figs. 2a-5a and those of • (in deg) in 
Figs. 2b-5b are given by numbers near the corresponding curves. The boldfaced 
lines indicate the relative energy transfer 6 in the impulsive limit calculated 
by Eq. (18). 

Note that similar trajectory studies were carried out in Ref. [4] but Parks et al. 
[4] fixed the collision energy and the impact parameter with respect to the 
center-of-mass of the salt molecule, whereas in the present paper we set the initial 
velocity of the projectile atom Xe to be directed precisely at the halogen ion 
(Fig. lc), i.e., the impact parameter with respect to the center-of-mass of the CsX 
molecule depended on the angle • and was equal to r sin • where r is the distance 
between the nucleus of the X-  ion and the CsX center-of-mass. 
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Fig. 2. Energy transfer ~ in inelastic scattering of Xe by CsF. Non-boldfaced lines indicate trajectory 
results. In panel (a), the value of the collision energy Eoo, is fixed and shown (in eV) near the 
corresponding curve 6(~). The boldfaced line presents the impulsive energy transfer. In panel (b), the 
value of the configuration angle • is fixed and shown (in deg) near the corresponding non-boldfaced line 
6(Eool) and boldfaced one (the latter pertains to the impulsive approximation). The boldfaced dashed lines 
in both panels refer to the refined impulsive model (discussed at the end of Sect. 3) that takes into 
account the motion of the particles after the main collision. Panel (e) points out, for various values of 
E~o~, the ranges of cb where the inequality (22) is satisfied 
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Fig. 3. Same as Fig. 2 but for inelastic scattering of Xe by CsCI 

Note also that the ample experimental data available for the Xe + XCs colli- 
sions [3-7, 9, 22, 38] pertain mainly to dissociation of the salt molecule (with 
possible formation of molecular ions) rather than to inelastic scattering, and are 
not selected in the location and angle of attack. So, the comparison of these data 
with the impulsive predictions for the amount of energy transfer is hardly possible. 

Within the impulsive framework, in all the four systems in question multiple 
impacts take place for sufficiently small angles 4. E.g., for 4, = 0 (collinear collisions) 
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in the systems Xe + XCs with X = I, Br there occur 3 encounters (two X e - X -  hits 
and a single X - - C s  + hit), in the system Xe + C1Cs, 4 encounters (two Xe-C1-  hits 
and two C1- -Cs  + hits), and in the system Xe + FCs, 6 encounters (three X e - F -  
hits and three F - - C s  + hits). 

For the Xe + FCs and Xe + C1Cs systems (Figs. 2a and 3a respectively) the 
most  obvious feature of the dependencies of  6 on the angle • with the collision 
energy Ecol fixed is the existence of a range of the • values over which the amount  of 
energy transfer is very low compared with both the calculation results outside this 
range and the impulsive predictions. Moreover, for fixed angles • in that range, 
6 turns out to be extremely sensitive to Ecol (Figs. 2b and 3b). This behaviour of the 
amount  of energy transfer as a function of • and Eeo I is a consequence of repeated 
approaches of the Xe atom to the X -  ion during the collision. At the beginning of 
a trajectory, the xenon atom quickly closes in on the halogen anion (at a short 
distance Ro) which causes excitation of the salt molecule. In the further motion,  the 
Xe atom may draw near to the same X -  ion some more times (at distances R1, 
R2 . . . . .  R~), and if R1, R2 . . . . .  Rt are sufficiently small then rotational excitation 



208 V.M. Azriel et al. 

(and in some cases vibrational excitation) of the salt molecule can reduce consider- 
ably which leads to a diminished net 6 value (cf. Ref. I-4]). This effect seems to defy 
interpretation within the framework of an impulsive model. In Figs. 2 c ~ c  for 
various Eeoc, the ranges of the angle 4~ values are shown over which: 

m i n ( R a ,  R 2 ,  • • • , Rl) < 8 at.u. (22) 

One sees that these ranges coincide precisely with those ranges of the • values 
where the ratio 6 is abnormally small. For  the Xe + ICs system, the inequality (22) 
is not satisfied for any 45 and Ecol. 

The breaks in the curves 6 = 6(~) for the Xe + FCs system at Ecol = 5 eV 
(Fig. 2a), for the Xe + C1Cs system at Ecol = 3 eV, 4 eV (Fig. 3a), and for the 
Xe + BrCs system at Ecol = 4 eV (Fig. 4a), as well as that in the curve 6 = 6(EcoO 
for the Xe + C1Cs system at • = 40 ° (Fig. 3b) indicate the trajectories leading to 
formation o fa  quasistable three-particle XeCs+X - complex which lives more than 
5 x 10-a2 s (but finally breaks up, and the Cs ÷ ion returns to the X -  ion). The 
break in the curve 6 = 6(4~) for the Xe + C1Cs system at Ecol = 1 eV (Fig. 3a) is due 
to prolonged rotation of the Xe atom around the CsC1 molecule. In both cases the 
amount of energy transfer as a function of # or Ecol exhibits very frequent 
oscillations which cannot be shown in the scale of our figures. 

If we now would forget these peculiarities of the curves 6 = 6(~) for the 
Xe + FCs and Xe + C1Cs systems, we would conclude from Figs. 2a-5a that the 
most characteristic feature of the dependency of 6 on the angle # for all the four 
systems is its "bell-like" shape (cf. Ref. I-4].): as # increases from 0 to 90 °, the amount  
of energy transfer steeply grows at first, and then begins decreasing. This behaviour 
of the function 6(~) may be explained by the following two reasons. 

1) For  45 not very large, for all the four systems in the impulsive limit, multiple 
impacts of the X-  ion with the Xe atom and the Cs ÷ ion occur which leads to 
strong lowering in the efficiency of energy transfer. 

2) If • is very close neither to 0 nor to 90 °, the incoming projectile Xe atom after its 
encounter with the X-  ion can push appreciably the Cs ÷ ion and therefore 
augment vibrational excitation of the salt molecule and increase the final 6 value. 

The first effect is of completely impulsive nature. We have tried to perform an 
impulsive simulation for the second effect. Namely, for the model considered in 
Sect. 2, we have examined whether an impact of the balls A and C can occur after 
the series of encounters of the ball B with the balls A and C is over and the 
configuration has disintegrated. This investigation requires specification of the 
radii of the balls, and we set the radii of the Xe atom and the Cs +, F - ,  CI-,  Br- ,  I -  
ions to be 2.09 A and 1.67 A, 1.33 A, 1.81 A, 1.96 A, 2.19 A, respectively I-4, 53]. The 
calculations have confirmed that in the Xe + FCs, Xe + C1Cs, and Xe + BrCs 
systems an additional A-C (i.e., Xe-Cs +) impact indeed occurs, but for the angles 

close to 90 °, which leads, as a rule, to reduction in the amount  of energy transfer 
due to partial rotational relaxation of the CsX molecule (the calculation results are 
shown in Figs. 2 4  by boldfaced dashed lines). It seems that the second effect 
cannot be described by an impulsive model. 

Comparing the impulsive and trajectory data, one concludes that over a wide 
range of the 4~ and E e o  I values, there is a certain agreement between predictions of 
the impulsive model and results of the accurate trajectory calculations which for 
multiple encounters is not poorer than for a single impact. This is perhaps partially 
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due to a simple topography of the potential energy surface of the systems in 
question [5]. For Xe + BrCs collisions, the agreement between the dependency 
6 = 6(~) obtained in the impulsive approximation and the functions calculated 
from trajectories is excellent (Fig. 4a). 

As was mentioned above, the number of approaches of the projectile Xe 
atom to the halogen X- ion in our trajectory simulation (i.e., the number of 
minima of the function R(t) where R denotes the distance between Xe and 
X- while t is the time) bears no relation, generally speaking, to the number 
of Xe-X- impacts in the impulsive approximation. We saw that the number 
of minima of R(t) may exceed the number of impulsive encounters (which is 
sometimes accompanied by a slump in the efficiency of energy transfer in the 
trajectory studies). The opposite situation is also possible. For small values of 
the angle ~, in all the systems except Xe + C1Cs a single approach of Xe to X- 
occurs in the trajectory calculations (cf. Ref. [-4]). At the same time, the amount 
of energy transfer for those • values has been found to be close to the quantity 
predicted by the impulsive model, several Xe-X- impacts occurring in the 
latter. Apparently, as one gradually changes the rigid sphere potential into 
a realistic interaction potential, these impulsive encounters spread out in time, 
start to overlap, and finally merge to form a single minimum of the trajectory 
function R(t). During this process, the efficiency of energy transfer varies only 
slightly. 

4 Conclusion 

The results of the present paper suggest that multiple impacts in noncollinear 
impulsive A + BC collisions are amenable to analysis (as well as in the case of 
collinear collisions) and can be described analytically. Our Eq. (18) for the amount 
of energy transfer in a collision of an A atom with a "cold" BC molecule is not, from 
our viewpoint, much more complicated than its simplest particular cases, namely, 
the Mahan formula (1) valid for a single A-B encounter only, and the Mahan-Shin 
formula (3) suitable for collinear collisions only. An application of Eq. (18) as well 
as Eq. (20) takes no computer time. 

Comparison of the data of trajectory calculations for the Xe + XCs systems 
with X = F, C1, Br, I and calculations in the impulsive approximation shows that at 
least for some systems our model can estimate the amount of energy transferred by 
the projectile atom to the "cold" target molecule with a satisfactory accuracy in 
a wide range of energies and collision configurations. This model provides a much 
more visual collision picture than forcing trajectories and promotes deeper 
comprehension of dynamics of endothermic reactions, such as collision-induced 
dissociation. 

The model proposed may be successfully used for a rough but very fast estimate 
of the amount of energy transfer in various systems and various collision geomet- 
ries as well as to distinguish orientation effects of the impulsive nature from effects 
which are due to another factors (such as peculiarities of topography of the 
potential energy surface). Nikitin [20] points out that analytic expressions for the 
impulsive limit of the efficiency of energy transfer in multiple impacts are of 
importance for approximately calculating the probabilities of transitions between 
various vibrational and rotational molecular states. 

One of the promising ways to develop our model further is to generalize it to 
A + BC collisions where the B and C particles are not assumed to touch at the 
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moment that the atom A hits the atom or ion B. Although such collisions seem to 
be much more difficult to study than those considered in the present paper (where 
the particle B is tangent to the particles A and C at the moment of collision), one 
may expect that the improved model will represent the results of trajectory 
calculations for noncollinear configurations more accurately. 
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Appendix A 

Some intermediate calculations 

In this Appendix we derive Eqs. (18) and (20) via the construction presented in 
Sect. 2. First of all, it is easy to verify that for the collision of an atom A with 
a "cold" molecule BC the vector vl (5) is equal to: 

ml Vcos ~, 
(k + scos ~) 

(ml + m2)sin 2 

(see Fig. la for the notations) and its length is equal to: 

ml Vsin • cos ~, 
vl --  (ml  + m z ) s i n 2  0( 

(A1) 

Now one should calculate the final values of the coordinates (x, y). The total 
number n, of impacts in the system under consideration is given by Eq. (14) and 
equal to either 2n - 1 or 2n. In the latter case, the last (2n)th impact is an encounter 
between the balls B and C which affects neither (V2 - V3, s) 2 nor IV2 - V3, s] 2. 
We can therefore ignore this impact. The values of the coordinates (x, y) just after 
the (2n - 1)th encounter are: 

_ (  _mlm2 )l/z Vcos~b ( 4 n - 1 ) ~  
x l  = \m~ + m 2 /  si---n~- cos ~ ,  

mlm2 ]1/2 Vcos~k s i n ( 4 n -  1)~ 
Ys" = \m~ ~--m2// sin~ 2 ' 

whence the final values of the coordinates (u, v) are: 

m 2 Vcos ~// 
uY = (ml + m2) sin 2 o~ cos(2n~), 

ml ~1/2 Vcos ~O 
vs = m2 m3(ml + m2)(m2 + rn3)J sin2 ot 

- -  cos[(2n - 1)~] (A2) 

according to Eq. (7). 
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It  is clear in view of Eq. (5) tha t  the energies E ~  and E~°~ are equal  to: 

Evib= m3 m3)(mlufcos~ Bc 2m2(m2 + -- (m2 + m3)vf) 2, 

E ~  = 2m2(m2m3+ m3) (mlulsin~ -- m2v1)2" (A3) 

Substi tut ing the expressions (A1) and (A2) for Vl, uy, v I into Eq. (A3) and taking 
into account  that: 

Eco 1 = ml(m2 -[- m3) V 2 
2(ml + m2 + m3) 

we arrive, after some s t ra ightforward algebra,  at the expressions (20) for 6 vib and 
6 r°t. The  sum of these expressions is the second of Eqs. (18) for 6. The first of 
Eqs. (18) for 6 can now be obta ined  via simple t r igonometr ical  relations. 

Appendix B 

The scattering angle of the projectile 

Within the f r amework  of the impulsive model  for A + BC collisions developed in 
Sect. 2, it is also possible to derive an analytic expression for the scattering angle 
9 of  the projectile A in the A - B C  center-of-mass f rame for the collision of A with 
a "cold" target  BC (9 being the angle between the initial velocity of  A and the final 
velocity). Namely ,  one can easily verify that: 

c o s 9  = (2 + 1) + (2 - 1)cos2~k 
{2[(22 + 1) + (22 - 1 ) c o s 2 ~ ] }  1/2' 

where 

sin2(n~) • 2 
2 = 1 -  2 sin2 ~ sin ft. 

Fo r  head-on  collisions (~ = 0) one has 9 = 0 (if 2 > 0) or  9 = rc (if 2 < 0). The 
inverse formula  expressing ~ in terms of 9 has the form: 

cos 2 ~ = ~ [1 + A sin 2 0 + (1 - A 2 sin 2 9) 1/2 COS 9], 

where A = (1 + 2)/(1 - 2). 
F o r  the case n = 1 similar formulas  were presented in Ref. [26], their applica-  

t ions to scattering p rob lems  being exemplified by Ref. [54]. 
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Note added in proof 

After this paper  had been submitted the impor tan t  papers 

Skrebkov OV, Smirnov AL (1985) Teor  Eksper Kh im 21:129 [in Russian]; 
(1990) Soy J Chem Plays 5:705 

came to our  attention. In  these papers, the M a h a n - S h i n  formula (3) was reobtained 
(independently of M a h a n  and Shin) and analytic expressions for the impulsive 
amoun t  of energy transfer in collinear collisions of  an a tom A with an excited 
molecule BC were derived as well. Moreover ,  Skrebkov and Smirnov proposed 
also a more  complicated analytic formula for the amoun t  of  energy transfer in 
collinear A + BC collisions which takes into account  the interaction potential  of  
the particles involved. This formula turns to the purely impulsive M a h a n - S h i n  
formula  (3) as the collision energy tends to infinity. 


